## **CRYSTAL CLEAR TECHNOLOGY**

# **Product Specification**

# T700T13X00

(REVISION2)

Crystal Clear Technology Sdn. Bhd.

16 Jalan TP5, Taman Perindustrian Sime UEP, 47600 Subang Jaya, Selangor DE Tel: +603-80247099 Website: <u>www.cct.com.my</u>



### 1. TABLE OF CONTENT

| No. | ITEM                                   | PAGE |
|-----|----------------------------------------|------|
| 1   | TABLE OF CONTENT                       | 2    |
| 2   | RECORD OF REVISION                     | 3    |
| 3   | SUMMARY                                | 4    |
| 4   | GENERAL SPECIFICATIONS                 | 4    |
| 5   | ABSOLUTE MAXIMUM RATINGS               | 4    |
| 6   | ELECTRICAL CHARACTERISTICS             | 5    |
| 7   | OPTICAL CHARATERISTIC                  | 8    |
| 8   | INTERFACE                              | 10   |
| 9   | BLOCK DIAGRAM                          | 11   |
| 10  | RELIABILITY TEST CONDITION             | 11   |
| 11  | INSPECTIONS CRITERIA                   | 12   |
| 12  | PRECAUTION FOR USING TFT MODULE        | 13   |
| 13  | MECHANICAL SPECIFICATION               | 17   |
|     | Attachment                             |      |
|     | 1. RESISTIVE TOUCH PANEL SPECIFICATION |      |
|     | 2. CAPACITIVE TOUCH PANEL SPECIFICTION |      |
|     |                                        |      |
|     |                                        |      |
|     |                                        |      |
|     |                                        |      |
|     |                                        |      |
|     |                                        |      |
|     |                                        |      |



### 2. RECORD OF REVISION

| Rev | Date     | Item | Page | Comment                           | Originator | Checked by |
|-----|----------|------|------|-----------------------------------|------------|------------|
| 1   | 18/11/16 |      |      | Initial Release                   | CF Liew    | Azhar      |
| 2   | 14/04/17 |      |      | Correction: model name in header. | Azhar      | Azhar      |
|     |          |      |      |                                   |            |            |
|     |          |      |      |                                   |            |            |
|     |          |      |      |                                   |            |            |
|     |          |      |      |                                   |            |            |
|     |          |      |      |                                   |            |            |
|     |          |      |      |                                   |            |            |



### 3. SUMMARY

This technical specification applies to 7"TFT-LCD module with a LED Backlight unit and a 40-pin TTL interface. This module supports 800\*R.G.B x 480, WVGA mode and can display 262,144 colors.

### 4. GENERAL SPECIFICATION

| Parameter                           | Specifications      | Unit   |
|-------------------------------------|---------------------|--------|
| Screen size                         | 7"(Diagonal)        | inch   |
| Display Resolution                  | 800 RGB x 480       | pixel  |
| Active area                         | 152.4x91.44         | mm     |
| Dot Pitch                           | 63.5 x 190.5        | um     |
| Pixel size                          | 190.5 x 190.5       | um     |
| Surface treatment                   | Anti-glare          |        |
| Color Saturation (NTSC)             | 45                  | %      |
| Pixel Configuration                 | RGB Vertical Stripe |        |
| Outline dimension                   | 165(W) x 104.44(H)  | mm     |
| Weight                              | TBD                 | g      |
| View Angle direction (optimum view) | 12 o'clock          |        |
| Interface Type                      | TTL                 |        |
| LCD Type                            | TN                  |        |
| Color Depth                         | 262,144             | colors |
| IC controller                       | Hx8678B,Hx8262A     |        |

### 5. ABSOLUTE MAXIMUM RATINGS (GND-0V)

| ltem                   | Symbol | Condition | Min. | Max.    | Unit | Remark |
|------------------------|--------|-----------|------|---------|------|--------|
| Power<br>Voltage       | Vcc    | GND=0     | -0.3 | 6       | V    | -      |
| Input logic<br>voltage | Vi     | GND=0     | -0.3 | Vcc+0.3 | V    | Note 1 |

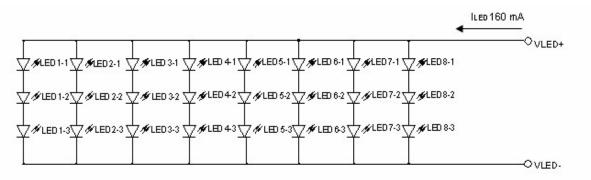
Note 1: DCLK, DE, R0~ R5, G0~ G5, B0~ B5.



### 6. ELECTRICAL CHARACTERISTICS

| 6.1 Recommended Operating Condition (GND=0V, Ta=25°C) | 6.1 | Recommended | Operating | Condition | (GND=0V, | Ta=25°C) |
|-------------------------------------------------------|-----|-------------|-----------|-----------|----------|----------|
|-------------------------------------------------------|-----|-------------|-----------|-----------|----------|----------|

| Doro        | motor      | Symbol |        | Rating | l      | llnit | Condition |
|-------------|------------|--------|--------|--------|--------|-------|-----------|
| Parameter   |            | Symbol | Min.   | Тур.   | Max.   | Unit  | Condition |
| Power Supp  | ly Voltage | Vcc    | 3.0    | 3.3    | 3.6    | V     |           |
| Input logic | High Level | VIH    | 0.7Vcc | -      | Vcc    | V     | Note 1    |
| voltage     | Low Level  | VIL    | 0      | -      | 0.3Vcc | V     | Note 1    |


Note 1: DCLK, DE, R0~ R5, G0~ G5, B0~ B5.

#### 6.2 LED Driving Conditions

Ta = 25°C

| Parameter     | Symbol | Min.   | Тур. | Max. | Unit | Remark |
|---------------|--------|--------|------|------|------|--------|
| LED current   | LED    | -      | 160  | -    | mA   | Note 1 |
| LED voltage   | VLED   | -      | 9.9  | -    | V    |        |
| LED Life Time | -      | 20,000 | -    | -    | Hr   | Note 2 |

Note1: There are 8 groups LED shown as below, VLED = 9.9V, ILED = 160mA

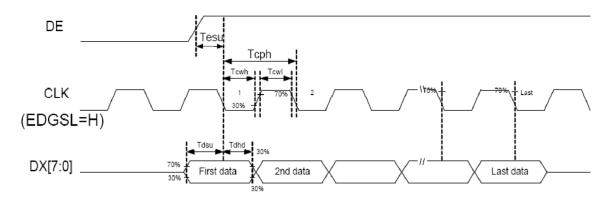


### 6.3 TFT-LCD Current Consumption

| Parameter         | Symbol |      | Rating | g    | Unit | Condition     |
|-------------------|--------|------|--------|------|------|---------------|
| r di difietei     | Symbol | Min. | Тур.   | Max. | Onit | Condition     |
| LCD power current | lcc    |      | 200    | 260  | mA   | black pattern |
| LED power current | LED    |      | 160    | 200  | mA   |               |

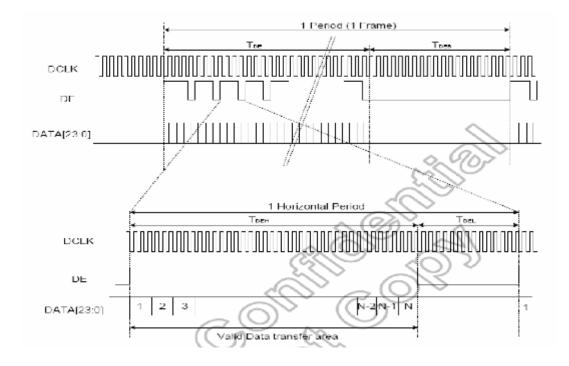


#### 6.4 AC Characteristics


|                   |           |       |       | 0     |           |
|-------------------|-----------|-------|-------|-------|-----------|
| Parameter         | Symbol    |       | Unit  |       |           |
| Farameter         | Symbol    | Min.  | Тур.  | Max.  | Unit      |
| Data setup time   | Tdsu      | 6     | -     | -     | ns        |
| Data hold time    | Tdhd      | 6     | -     | -     | ns        |
| DE setup time     | Tesu      | 6     | -     | -     | ns        |
| CLK frequency     | Fсрн      | 29.40 | 33.26 | 42.48 | MHz       |
| CLK period        | Тсрн      | 23.54 | 30.06 | 34.01 | ns        |
| CLK pulse duty    | Тсwн      | 40    | 50    | 60    | %         |
| CLK pulse duty    | TcwL      | 40    | 50    | 60    | %         |
| DE period         | TDEH+TDEL | 1000  | 1056  | 1200  | Тсрн      |
| DE pulse width    | Tdeh      | -     | 800   | -     | Тсрн      |
| DE frame blanking | Tdeb      | 10    | 45    | 110   | Tdeh+Tdel |
| DE frame width    | Tde       | -     | 480   | -     | Tdeh+Tdel |
|                   |           |       |       |       |           |

Frame rate range : 60Hz~65Hz

Note: We suggest using the typical value, so it can have better performance


6.5 Timing Controller Timing Chart

### **Clock and Data input waveforms**






#### 6.6 Data Input format



6.7 Power ON/OFF sequence



| Parameter | Min. | Тур. | Max. | Unit |
|-----------|------|------|------|------|
| T1        | 1    |      | 2    | ms   |
| T2        | 0    | 60   |      | ms   |
| Т3        | 200  |      |      | ms   |
| T4        | 200  |      |      | ms   |
| T5        | 1    |      |      | ms   |
| Т6        | 1000 |      |      | ms   |



### 7. OPTICAL CHARACTERISTICS (ON LCD SURFACE)

CRYSTAL CLEAR TECHNOLOGY SDN. BHD.

| Item           |               | Symbol | Condition      | Min.  | Тур.  | Max.  | Unit              | Remark               |
|----------------|---------------|--------|----------------|-------|-------|-------|-------------------|----------------------|
| Brightnes      | s             | -      |                | 300   | 350   | -     | cd/m <sup>2</sup> | Center of<br>display |
| Descretion     |               | Tr     | Viewing        | -     | 5     | 10    | .ms               | Noto 2 5             |
| Response t     | lime          | Tf     | normal         | -     | 11    | 16    | .ms               | Note 3,5             |
| Contrast ratio |               | CR     | angle<br>θ=ψ=0 | 250   | 400   | -     | -                 | Note 4,5             |
| Color          | \ A / I= :4 = | Wx     |                | 0.249 | 0.299 | 0.349 |                   |                      |
| Chromaticity   | White         | Wy     |                | 0.278 | 0.328 | 0.378 | -                 | Note 2,6,7           |
|                |               | θR     |                | 60    | 70    | -     |                   |                      |
| Viewing angle  | Hor.          | θL     |                | 60    | 70    | -     |                   |                      |
|                |               | ψΤ     | CR≧10          | 50    | 60    | -     | Deg.              | Note 1               |
|                | Ver.          | ψΒ     |                | 60    | 70    | -     |                   |                      |

Note 1: Definition of viewing angle range

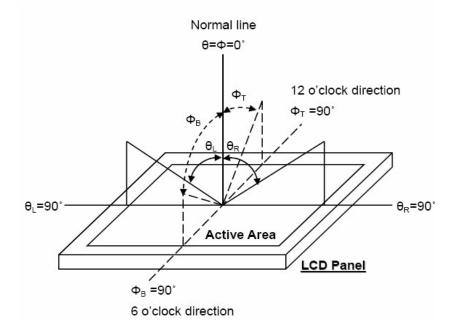



Fig. 7-1 Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 luminance meter 1.0° field of view at a distance of 50cm and normal direction.



CRYSTAL CLEAR TECHNOLOGY SDN. BHD.

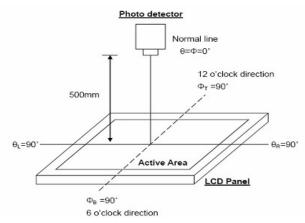
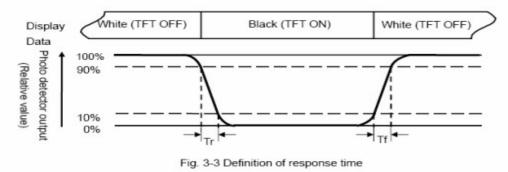




Fig.7-2 Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output Intensity changed from 10% to 90%.



Note 4: Definition of contrast ratio: The contrast ratio is defined as the following expression.

Contrast ratio (CR) = Luminance measured when LCD on the White state

Luminance measured when LCD on the "Black" state

Note 5: White Vi = V<sub>i50</sub> ± 1.5V Black Vi = V<sub>i50</sub> ± 2.0V "±" means that the analog input signal swings in phase with VCOM signal. "±" means that the analog input signal swings out of phase with VCOM signal. The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Brightness (min) Note 8: Uniformity (U) = \_\_\_\_\_\_x 100% Brightness (max)



#### 8. INTERFACE

#### 8.1 TFT Pin Definition

| Din No   | Symbol        | Description                                    | Domorko |
|----------|---------------|------------------------------------------------|---------|
| Pin No.  | Symbol<br>GND | Description                                    | Remarks |
| 1        |               | Power Ground                                   |         |
| 2 3      | GND           | Power Ground                                   |         |
| <u> </u> | NC            | Not Connect                                    |         |
|          | Vcc           | Power Supply for Digital Circuit               | _       |
| 5        | Vcc           | Power Supply for Digital Circuit               | _       |
| 6        | Vcc           | Power Supply for Digital Circuit               | _       |
| 7        | Vcc           | Power Supply for Digital Circuit               | _       |
| 8        | NC            | Not Connect                                    |         |
| 9        | DE            | Data Enable                                    |         |
| 10       | GND           | Power Ground                                   |         |
| 11       | GND           | Power Ground                                   |         |
| 12       | GND           | Power Ground                                   |         |
| 13       | B5            | Blue Data 5 (MSB)                              |         |
| 14       | B4            | Blue Data 4                                    |         |
| 15       | B3            | Blue Data 3                                    |         |
| 16       | GND           | Power Ground                                   |         |
| 17       | B2            | Blue Data 2                                    |         |
| 18       | B1            | Blue Data 1                                    |         |
| 19       | B0            | Blue Data 0 (LSB)                              |         |
| 20       | GND           | Power Ground                                   |         |
| 21       | G5            | Green Data 5 (MSB)                             |         |
| 22       | G4            | Green Data 4                                   |         |
| 23       | G3            | Green Data 3                                   |         |
| 24       | GND           | Power Ground                                   |         |
| 25       | G2            | Green Data 2                                   |         |
| 26       | G1            | Green Data 1                                   |         |
| 27       | G0            | Green Data 0 (LSB)                             |         |
| 28       | GND           | Power Ground                                   |         |
| 29       | R5            | Red Data 5 (MSB)                               |         |
| 30       | R4            | Red Data 4                                     |         |
| 31       | R3            | Red Data 3                                     |         |
| 32       | GND           | Power Ground                                   |         |
| 33       | R2            | Red Data 2                                     |         |
| 34       | R1            | Red Data 1                                     |         |
| 35       | R0            | Red Data 0 (LSB)                               |         |
| 36       | GND           | Power Ground                                   |         |
| 37       | GND           | Power Ground                                   |         |
| 38       | DCLK          | Clock Signals ; Latch Data at the Falling Edge |         |
| 39       | GND           | Power Ground                                   |         |
| 40       | GND           | Power Ground                                   |         |

Note: User's connector part number is PF050-40ZSG-F09-S manufactured by UJU or equivalent.

#### 8.2 Backlight Driving part

| Pin No | Symbol | Description         |
|--------|--------|---------------------|
| 1      | VLED+  | Red, LED_ Anode     |
| 2      | VLED-  | White, LED_ Cathode |

Note: The backlight interface connector is a model **BHSR-02VS-1**manufactured by JST or equivalent. The matching connector part number is **SM02B-BHSS-1-TB** manufactured by JST or equivalent.



### 9. BLOCK DIAGRAM



### **10. RELIABILITY TEST CONDITION**

| No.                             | Test Items                                           | Test Condition                                                                                       | REMARK |
|---------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------|
| 1                               | High Temperature Storage Test                        | Ta=80°C Dry 240h                                                                                     |        |
| 2                               | Low Temperature Storage Test                         | Ta=-30°C Dry 240h                                                                                    |        |
| 3                               | High Temperature Operation Test                      | Ta=70°C Dry 240h                                                                                     |        |
| 4                               | Low Temperature Operation Test                       | Ta=-20°C Dry 240h                                                                                    |        |
| 5                               | High Temperature and High Humidity<br>Operation Test | Ta=60°C 90%RH 240h                                                                                   |        |
| 6 Electro Static Discharge Test |                                                      | 150pF, 330Ω , ±8KV(Contact)/±<br>15KV(Air), 5 points/panel,<br>5 times/point                         |        |
| 7                               | Shock Test (non-operating)                           | Half sine wave, 180G, 2ms<br>one shock of each six faces<br>(I.e. run 180G 2ms for all six<br>faces) |        |
| 8                               | Vibration Test (non-operating)                       | Sine wave, 10 ~ 500 ~ 10Hz,<br>1.5G, 0.37oct/min 3<br>axis, 1hour/axis                               |        |
| 9                               | Thermal Shock Test                                   | -20°C(0.5h) ~ 70°C(0.5h) / 100<br>cycles(Dry)                                                        |        |

1. REACH (Directive 2011\55\EU)

2. RoHS (Directive 2002\95\EC)



#### No Defect Definition of defect **Inspection Criteria** A – Viewing area The size of defective dot over 1/2 of whole is regards B - Viewing area as one defective dot. C - Outside Viewing area Smaller than 1/2 Larger than 1/2 L 1/5 **B** AREA a) Definition of dot A AREA R G В R G В 'No dot defect' '1 dot defect' 1/5 Г (ignore) (counted) C AREA Dot appear bright and unchanged in size when LCD Defect Α В С b) Bright Dot panel is displaying black pattern Bright Dot 1 1 1 Dot appear dark and unchanged in size when LCD Dark Dot 2 2 NC panel is displaying pure color (RED, GREEN or Total 4 c) Dark Dot BLUE) pattern NC - Not Count 1 pair = 2 dots Defect Acc. Count d) 2 dot adjacent 2 Bright dot Adjacent 0 Type 1 Type 2 2 Dark dot Adjacent 1 or Type 3 A: Viewing area -Black/Dark/Bright Spot is points on display which B: Outside Viewing area appear dark/bright and usually result from в contamination - These defect do not vary in size intensity (contrast) Black spot Δ when contras is varied. White Spot Bright spot Pin Hole Defect Category В Foreign Particle A D=(a+b)/2(mm) D < 0.10 NC $0.10 \leq \mathsf{D} < 0.20$ 2 NC $0.20 \le \mathsf{D} \le 0.30$ 1 D > 0.30 0 2 Black Line Defect Category А В White line W < 0.03 NC Particle between 0.03 ≤ W ≤ 0.08, L ≤2.0 2 NC POL and Glass W > 0.08 0 Scratch on Glass width Defect Category В А D < 0.20 NC POL Bubble 0.20 ≤ D < 0.30 3 POL Dented NC $0.30 \le D \le 0.50$ 2 D > 0.5 0 Mura 3 Judged by Limit sample (50% Grey)

### **11. INSPECTION CIRTERIA**



### 12. PRECAUTION AND LIMITED WARRANTY

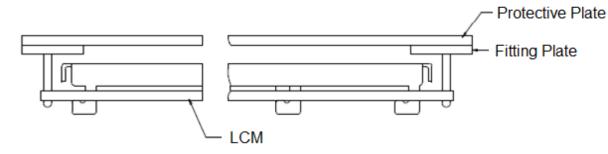
- 1. Handing Precautions
  - a. The display panel is made of glass and polarizer. As glass is fragile. It tends to chip during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock of impact or by dropping it.
  - b. If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance is in contact with your skin or clothes, wash it off using soap and water.
  - c. Do not apply excessive force to the display surface or the adjoining areas since this may cause the colour tone to vary. Do not touch the display with bare hands. This will stain the display area and degrade the insulation between terminals. Scratch and dents may occur on polarizer too.
  - d. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than a HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on it. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming in to contact with room temperature air.
  - e. If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents
    - Isopropyl alcohol
    - Ethyl alcohol
    - Do not scrub hard to avoid damaging the display surface.
  - f. Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
    - Water
    - Ketone
    - Aromatic solvents
    - Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or colour fading. Avoid contact with oil and fats.
  - g. Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
  - h. Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
  - i. Do not attempt to disassemble or process the LCD module.
  - j. NC terminal should be open. Do not connect anything.
  - k. If the logic circuit power is off, do not apply the input signals.
  - I. Electro-Static Discharge Control. Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
    - Before removing LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential. Be sure to ground the body when handling the LCD modules.
    - Tools required for assembly, such as soldering irons, must be properly grounded. Make certain the AC power source for the soldering iron does not leak. When using an electric screwdriver to attach LCM, the screw driver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
    - To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions. To reduce the generation of static electricity be careful that the air in the work environment is not too dry. A relative humidity of 50%-60% is recommended. As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.

CRYSTAL CLEAR TECHNOLOGY SDN. BHD.

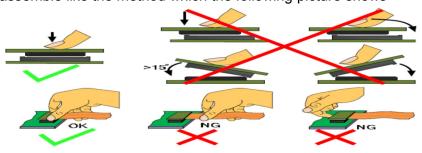
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- m. Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.
  - Do not alter, modify or change the shape of the tab on the metal frame.
  - Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
  - Do not damage or modify the pattern writing on the printed circuit board.
  - Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
  - Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
  - Do not drop, bend or twist the LCM.
- 2. Storage Precautions

When storing the LCD modules, the following precaution are necessary.

- a. Store them in a sealed polyethylene bag. If properly sealed, there is no need for the desiccant.
- b. Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0□C and 35□C, and keep the relative humidity between 40%RH and 60%RH.
- c. The polarizer surface should not come in contact with any other objects.
- 3. Others
  - a. Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.
  - b. If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.
  - c. To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc. Exercise care to avoid holding the following sections when handling the modules.


Exposed area of the printed circuit board.

Terminal electrode sections.


- 4. Using LCD Modules
  - a. Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

b. Cover the surface with a transparent protective plate to protect the polarizer and LC cell.



- c. When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be 0.1mm.
- d. Precaution for assemble the module with BTB connector: Please note the position of the male and female connector position, don't assemble or assemble like the method which the following picture shows



CRYSTAL CLEAR TECHNOLOGY SDN. BHD.

5. Precaution for soldering the LCM

|         | Manual soldering | Machine drag soldering | Machine press soldering |
|---------|------------------|------------------------|-------------------------|
| No RoHS | 290°C ~350°C.    | 330°C ~350°C.          | 300°C ~330°C.           |
| Product | Time: 3-5S.      | Speed: 4-8 mm/s.       | Time: 3-6S.             |
|         |                  |                        | Press: 0.8~1.2Mpa       |
| RoHS    | 340°C ~370°C.    | 350°C ~370°C.          | 330°C ~360°C.           |
| Product | Time: 3-5S.      | Time: 4-8 mm/s.        | Time: 3-6S.             |
|         |                  |                        | Press: 0.8~1.2Mpa       |

- a. If soldering flux is used, be sure to remove any remaining flux after finishing the soldering operation (This does not apply in the case of a non-halogen type of flux). It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.
- b. When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- c.When removing the electroluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.
- 6. Precautions for Operation
  - a. Viewing angle varies with the change of liquid crystal driving voltage (VLCD). Adjust VLCD to show the best contrast.
  - b. It is recommended to drive LCD's within the specified voltage limit since over limit will cause shorter LCD life. An electrochemical reaction due to direct current causes LCD-deterioration. Avoid the use of direct current drive.
  - c. Response time will be extremely delayed at lower temperature compared to room operating temperature range and on the other hand, at higher temperature LCD-shows dark color in them. However those phenomena do not mean malfunction. The LCD will return to normal performance when ambient temperature revert to room condition.
  - d. If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and on.
  - e. A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
  - f. Input logic voltage before apply analogue high voltage such as LCD driving voltage when power on. Remove analogue high voltage before logic voltage when power off the module. Input each signal after the positive/negative voltage becomes stable.



g. Please keep the temperature within the specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.

### 7. Safety

- a. It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- b. If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.
- 8. Limited Warranty

Unless otherwise agreed between Crystal Clear Technology and customer, Crystal Clear Technology will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with Crystal Clear Technology acceptance standards, for a period of one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of Crystal Clear Technology is limited to repair and/or replacement on the terms set forth above. Crystal Clear Technology will not responsible for any subsequent or consequential events.

#### 9. Return LCM under Warranty

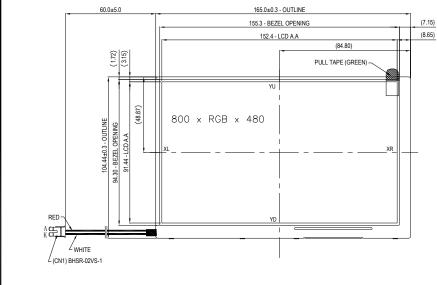
No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are:

- Broken LCD glass
- PCB eyelet's damaged or modified
- PCB conductors damaged
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- Soldering to, or modifying the bezel in any manner.

Module repairs will be invoiced to customer upon mutual agreement. Modules must be returned with sufficient description of failure or defects. Any connectors or cable installed by customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.

B -

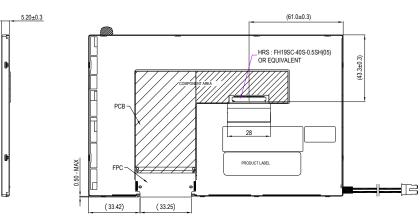
А


C \_ D

– E

F

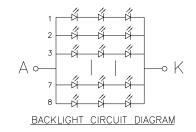
G


Н



Ζ

4


 $\cap$ 



8

9

10



#### PIN ASSIGNMENT(CN2)

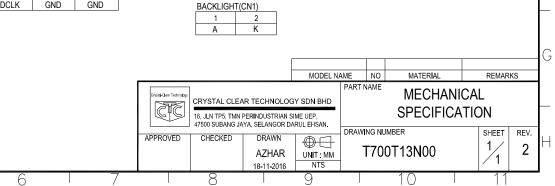
| 4   | 5                           | 6                                                                                   | 7                                                                                                                            | 8                                                                                                                                                                    | 9                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                    |
|-----|-----------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC | VCC                         | VCC                                                                                 | VCC                                                                                                                          | NC                                                                                                                                                                   | DE                                                                                                                                                                                                            | GND                                                                                                                                                                                                                                                   |
| 14  | 15                          | 16                                                                                  | 17                                                                                                                           | 18                                                                                                                                                                   | 19                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                    |
| B4  | B3                          | GND                                                                                 | B2                                                                                                                           | B1                                                                                                                                                                   | B0                                                                                                                                                                                                            | GND                                                                                                                                                                                                                                                   |
| 24  | 25                          | 26                                                                                  | 27                                                                                                                           | 28                                                                                                                                                                   | 29                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                    |
| GND | G2                          | G1                                                                                  | G0                                                                                                                           | GND                                                                                                                                                                  | R5                                                                                                                                                                                                            | R4                                                                                                                                                                                                                                                    |
| 34  | 35                          | 36                                                                                  | 37                                                                                                                           | 38                                                                                                                                                                   | 39                                                                                                                                                                                                            | 40                                                                                                                                                                                                                                                    |
| R1  | R0                          | GND                                                                                 | GND                                                                                                                          | DCLK                                                                                                                                                                 | GND                                                                                                                                                                                                           | GND                                                                                                                                                                                                                                                   |
|     | 14<br>B4<br>24<br>GND<br>34 | 14      15        B4      B3        24      25        GND      G2        34      35 | 14      15      16        B4      B3      GND        24      25      26        GND      G2      G1        34      35      36 | 14      15      16      17        B4      B3      GND      B2        24      25      26      27        GND      G2      G1      G0        34      35      36      37 | 14      15      16      17      18        B4      B3      GND      B2      B1        24      25      26      27      28        GND      G2      G1      G0      GND        34      35      36      37      38 | 14      15      16      17      18      19        B4      B3      GND      B2      B1      B0        24      25      26      27      28      29        GND      G2      G1      G0      GND      R5        34      35      36      37      38      39 |

5

5

6

) VIEWING DIRECTION


| NOTE |  |
|------|--|
|------|--|

| NOTE:                    |                                          |
|--------------------------|------------------------------------------|
| 1. DISPLAY TYPE          | : 7" TFT, TRANSMISSIVE, 262K COLORS      |
| 2. DISPLAY RESOLUTION    | : 800 X RGB X 480                        |
| 3. VIEWING ANGLE         | : 12 O'CLOCK                             |
| 4. LCD CONTROLLER/DRIVER | : SOURCE: HX8262A X 2, GATE: HX8678B X 1 |
| 5. LOGIC VOLTAGE         | : 3.3±0.165C                             |
| 6. OPERATING TEMPERATURE | : -20°C TO +70°C                         |
| 7. STORAGE TEMPERTURE    | : -30°C TO +80°C                         |
| 8. BACKLIGHT (@25°C)     | : WHITE COLOR                            |
|                          | FORWARD CURRENT(mA) 160mA(CONSTANT)      |
| 9. GENERAL TOLERANCE     | : X.X ±0.3                               |
|                          | X.XX ±0.1                                |
|                          | ANGULAR ±1°                              |
|                          |                                          |

2

3

4



B

А

11

60.0±5.0 165.0±0.3 - OUTLINE (7.15) 155.3 - BEZEL OPENING (8.65) 152.4 - LCD A.A (0.50) 164.0 - T.P 154.4 - T.P V.A (7.60) (8.30) 7.20±0.3 153.0 - T.P A.A (WITH COMPONENT) (84.80) (1.72) (3.15) (2.30) (2.30) (2.30) 5.20±0.3 (61.0±0.3) PULL TAPE (GREEN) (119.5) YU 5.0±0.5 HRS : FH19SC-40S-0.5SH(05) (43.3±0.3) OR EQUIVALENT (48.87) 800 x RGB x 480 104.44±0.3 - OUTLINE 94.30 - BEZEL OPENING 91.44 - LCD A.A (PW=0.70) (2 - 1.0) P1.0 X (4-1) = 3.0 92.04 - T.P./ 93.40 - T.P./ 103.0 - T.P 입 VIEWING DIRECTIO PCB 0.50 - MAX PRODUCT LABEL FPC RED – \$€I¥  $\Box =$ (33.42) (33.25) WHITE (1.44) 18.0±0.5 -(CN1) BHSR-02VS-1 - 7 -• K A o-PIN ASSIGNMENT(CN2) 10 3 4 5 6 7 1 2 8 9 VCC VCC GND GND NC VCC VCC NC DE GND 8 12 15 16 17 19 20 11 13 14 18 BACKLIGHT CIRCUIT DIAGRAM GND GND B5 B4 B3 GND B2 B1 B0 GND 21 22 23 24 25 26 27 28 29 30 TOUCH PANEL CONNECTION 3 4 2 G5 G4 G3 GND G2 G1 G0 GND R5 R4 1 YU XR YD XL 31 32 33 34 35 36 37 38 39 40 R3 R0 GND R2 R1 GND GND DCLK GND GND BACKLIGHT(CN1) 1 2 NOTE: Κ Α : 7" TFT, TRANSMISSIVE, 262K COLORS : 800 X RGB X 480 : 12 O'CLOCK MATERIAL REMARKS

6

8

9

MODEL NAME

 $\bigcirc \bigcirc$ 

UNIT: MM

NTS

9

CRYSTAL CLEAR TECHNOLOGY SDN BHD

47500 SUBANG JAYA, SELANGOR DARUL EHSAN.

DRAWN

AZHAR

18-11-2016

16, JLN TP5, TMN PERINDUSTRIAN SIME UEP,

CHECKED

8

ystal-Clear Technology

ĊĊ

APPROVED

NO

DRAWING NUMBER

T700T13R00

10

MECHANICAL

**SPECIFICATION** 

SHEET

1

1

REV.

2

PART NAME

10

11

Λ

В

G

5

4

4

5

6

А

В

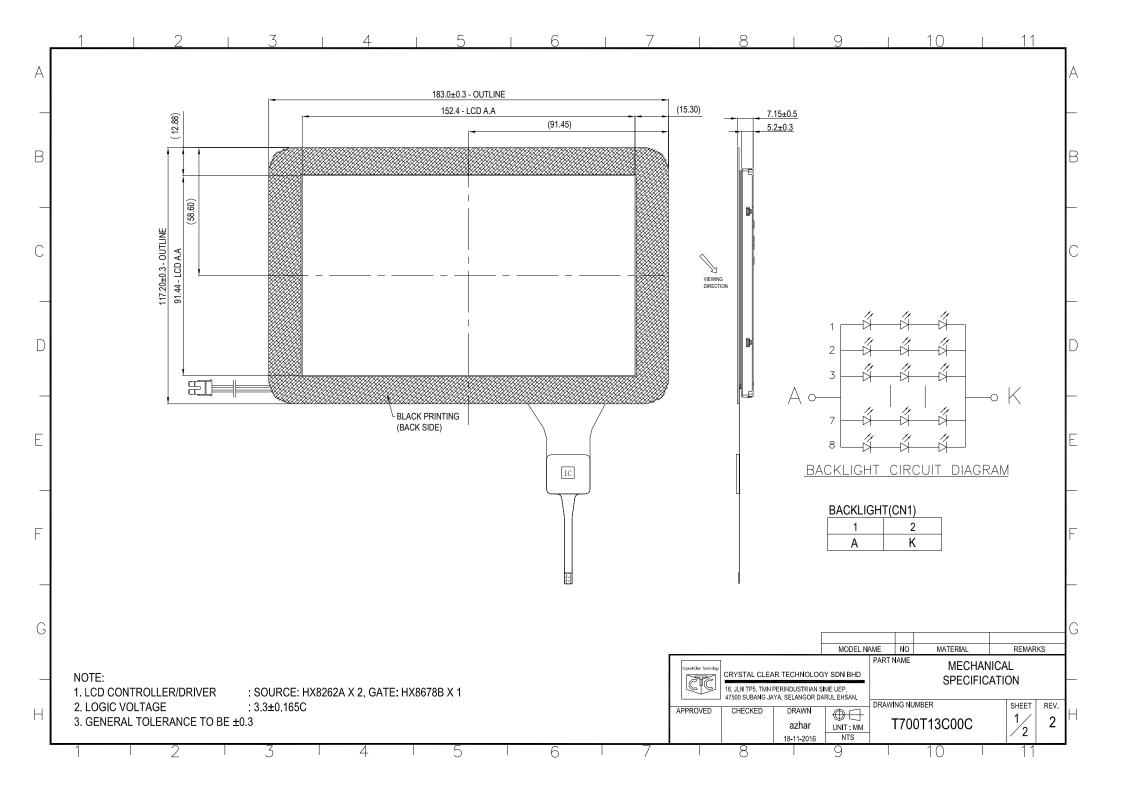
C

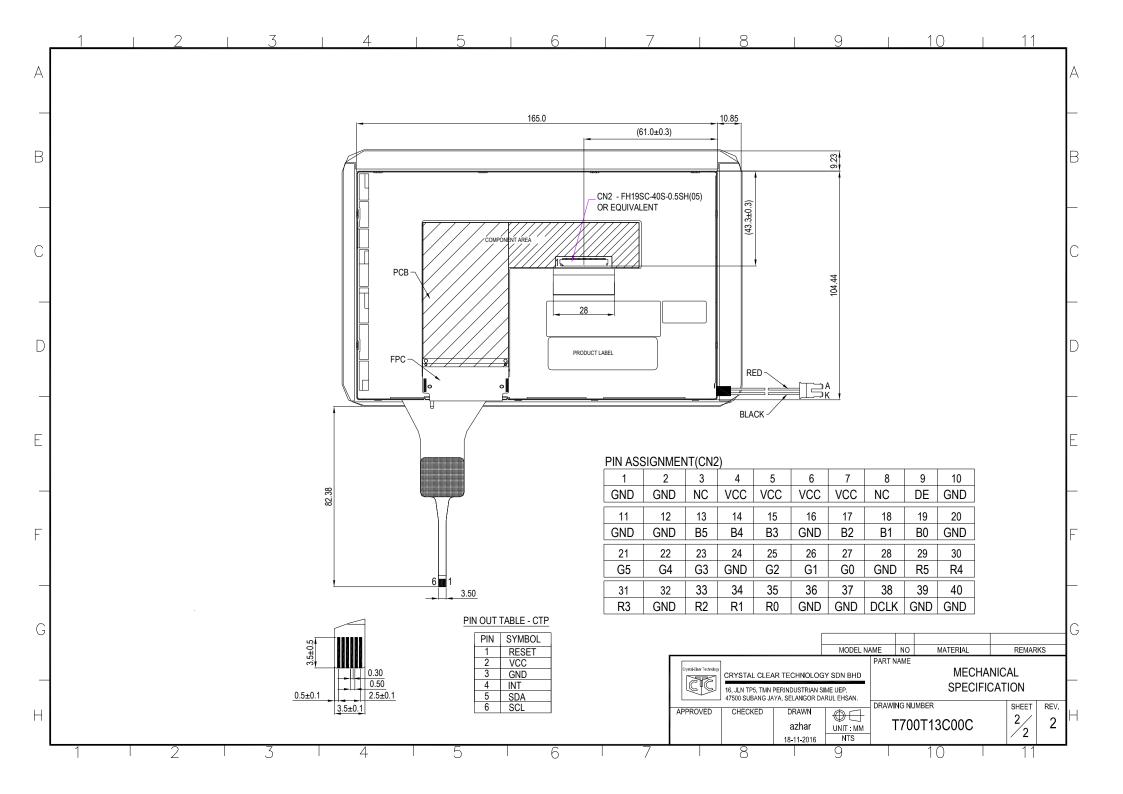
 $\square$ 

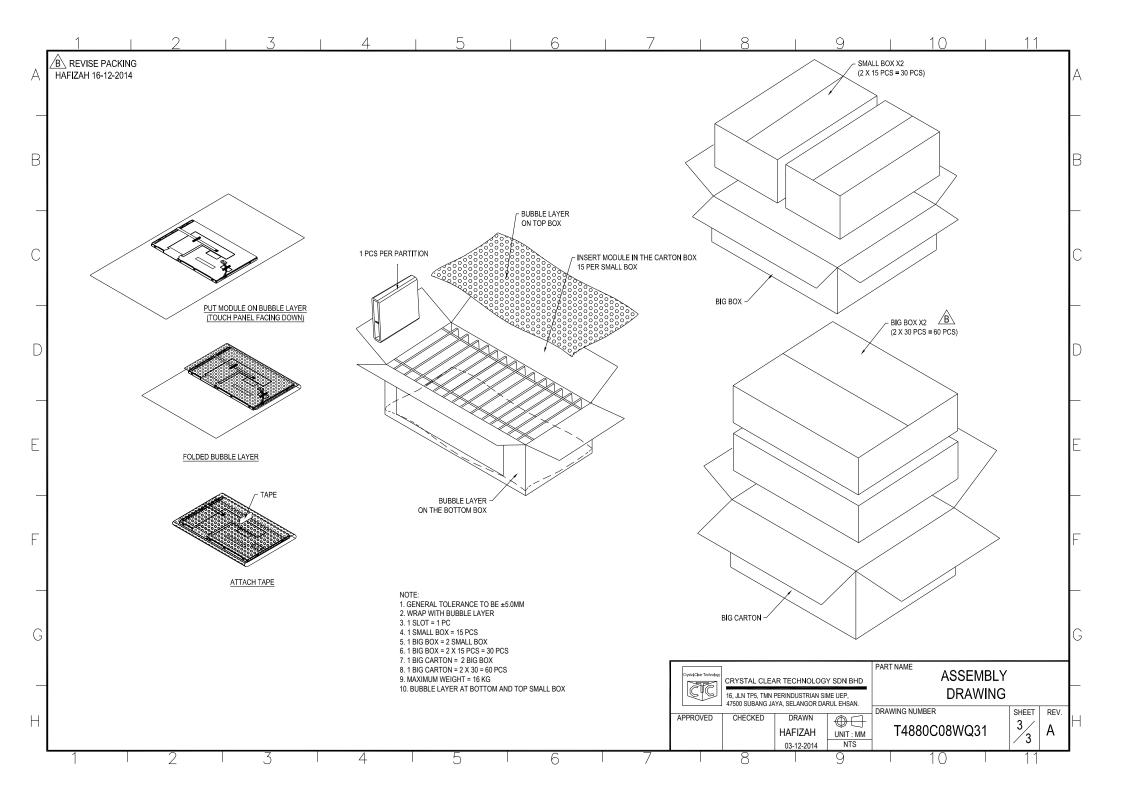
Ε

F

G


Н


1. DISPLAY TYPE 2. DISPLAY RESOLUTION 3. VIEWING ANGLE 4. LCD CONTROLLER/DRIVER : SOURCE: HX8262A X 2, GATE: HX8678B X 1 5. LOGIC VOLTAGE : 3.3±0.165C 6. OPERATING TEMPERATURE : -20°C TO +70°C 7. STORAGE TEMPERTURE : -30°C TO +80°C 8. BACKLIGHT (@25°C) : WHITE COLOR FORWARD CURRENT(mA) 160mA(CONSTANT) 9. GENERAL TOLERANCE : X.X ±0.3 X.XX ±0.1 ANGULAR ±1°


.5

2

3







### **Appendix 1: Resistive Touch Panel Specification**

- 1. Scope Resistive product spec
- 2. Features
  - 2.1. Type 4 Wire analog resistive Touch panel
  - 2.2. Input Method Pen and/or Finger
  - 2.3. Structure PET Based Film + Glass
  - 2.4. Shape Shape, structure and dimension are referred to drawing

#### 3. Electrical Characteristic (R=Resistance)

- 3.1. Rating Maximum voltage is less than DC10.0 volts.
- 3.2. R between pads ► X axis 200 1000 Ω
  - Y axis 100 400 Ω
- 3.3. Linearity Less than ±3.0 %
- 3.4. Chattering time 10ms or less
- 3.5. Insulation R Minimum 20M $\Omega$  at DC2 volts

#### 4. Optical Characteristics (T=transmission)

- 4.1. Light T More than 80 %
- 4.2. Newton-ring Criterion is specified as reference sample agreed upon

#### 5. Mechanical Characteristics

- 5.1. Input Method 0.8 R Polyacetal stylus and/or Finger
  - Activation Force Finger Input 90 g or less with 8.0 R silicon rubber
    - ▶Pen Input 100 g or less with 0.8 R Polyacetal-stylus

96 hours at +80°C

96 hours at -30 °C

5.3 Surface Hardness Pencil hardness 3 H more (JIS-K5400)

#### 6. Environmental Characteristics (T=Temperature)

- 6.1. Operating T. -20 °C +70 °C
- 6.2. Storage T. -30 °C +80 °C
- 7. Reliability Characteristics (Storage)

#### 7.1. High Temperature

5.2.

The measurement must be made after 24 hours or more at room temperature and should satisfy the following condition.

- Resistance between pads
  Linearity
  In accordance with 3.2
  In accordance with 3.3
- ► Insulation resistance In accordance with 3.5
- 7.2. Low Temperature

The measurement must be made after 24 hours or more at room temperature and should satisfy the following condition.

- Resistance between pads
  Linearity
  In accordance with 3.3
  Insulation resistance
  In accordance with 3.5
- 7.3. High Temperature and Humidity 96 hours at +60 °C,90 %RH The measurement must be made after 24 hours or more at room temperature and should satisfy the following condition.

### CRYSTAL CLEAR TECHNOLOGY SDN. BHD.



7.4.

| Resistance between pads                                    | In accordance with 3.2        |
|------------------------------------------------------------|-------------------------------|
| ► Linearity                                                | In accordance with 3.3        |
| Insulation resistance                                      | In accordance with 3.5        |
| Thermal Shock<br>One cycle is 60 min at -10 °C and then 60 | 10 Cycles<br>) min at +60 °C. |

The measurement must be made after 24 hours or more at room temperature and should satisfy the following condition.

| Resistance between pads | In accordance with 3.2 |
|-------------------------|------------------------|
|-------------------------|------------------------|

- ► Linearity In accordance with 3.3
- ► Insulation resistance In accordance with 3.5

#### 8. Durability

8.1. Writing Durability

- 100,000 capital alphabetical characters at following conditions.
- Pen: R0.8mm Polyacetal stylus Load: 150 ~ 250 gf
- Writing speed: 66mm/s
- Voltage supply: no

The measurement must satisfy followings.

- ► Resistance between pads In accordance with 3.2
- ► Linearity In accordance with 3.3
- ► Insulation resistance In accordance with 3.5

### 8.2. Finger Touch

1,000,000 times punching at following conditions.

Pen: R3.75mm silicon rubber Load: 250 gf

Hitting speed: 3 times/s

The measurement must satisfy followings.

- Resistance between pads
  Linearity
  In accordance with 3.3
  In accordance with 3.3
- ► Insulation resistance In accordance with 3.5



### **Appendix 2: Capacitive Touch Panel Specification**

### 1. Introduction

The purpose of this specification is defined the general provision and quality requirement apply to 7 inch Capacitive Touch module integrated by Crystal Clear Technology. This document, together with the module drawing, is the highest level specification for this product. When users touch module by finger, the module can send coordinates of point at the contact point to host. The finger position information is sent to host by I2C bus which is determined by host through IRQ line.

### 2. General Description

This document contains the Capacitive Touch module specification. The maximum rating, characteristics, hardware, and inspection of the module are described in the subsequent sections. In special, I2C protocol will be introduced in detail.

### 2.1. Touch sensor characteristics

- Technology: Use the character of capacitive among the touch electrodes on touch panel to identify the positions of touch signals
- Touch method: Ten fingers multi touch with pressure sensing
- Interface: I2C

### 2.2. General Specification

| Item                | Specification                             | Unit  |
|---------------------|-------------------------------------------|-------|
| Screen Diagonal     | 7.0                                       | Inch  |
| Applied Resolution  | 800 x 480                                 | Pixel |
| Module Outline      | 117.2(H) x 183(W) x 1.4(T) (Excluded FPC) | Mm    |
| Touch Area          | 91(H) x 154.6(W)                          | Mm    |
| Cover Lens Material | Glass                                     | -     |
| Transparency        | 85                                        | %     |
| Origin              | -                                         | -     |
| Controller          | GT911                                     | -     |



## 3. Absolute Maximum Ratings

Absolute Maximum rating of touch panel module is as following

| Symbol | Parameter                | Value        | Unit |
|--------|--------------------------|--------------|------|
| VCORE  | Supply Voltage for Logic | -0.3 to +2.8 | V    |
| Vddio  | Supply Voltage for I/O   | -0.3 to +3.3 | V    |
| TA     | Operating Temperature    | -20 to +85   | °C   |
| TSTG   | Storage Temperature      | -30 to +85   | °C   |

Note: If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also, if the module operated with the absolute maximum ratings for a long time, its reliability may drop.

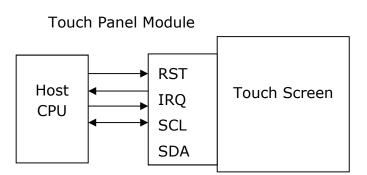
### 4. Electrical Characteristics

DC Characteristics (Unless otherwise specified, Voltage Referenced to VSS, TA = -20 to  $85^{\circ}$ C)

| Symbol | Parameter                 | Conditions | Min            | Тур | Max            | Unit |
|--------|---------------------------|------------|----------------|-----|----------------|------|
| AVdd   | Analog power supply       |            | 2.8            | -   | 3.3            | V    |
| Vddio  | Digital I/O power supply  |            | 1.8            | -   | 3.3            | V    |
| Idd    | Operating mode current    |            | -              | 8   | 14.5           | mA   |
| IGR    | Green mode current        |            | -              | 3.3 | -              | mA   |
| Isleep | Sleep mode current        |            | 70             | -   | 120            | uA   |
| VOH1   | Logic High Output Voltage |            | 0.85*<br>Vddio | -   | -              | V    |
| VOL1   | Logic Low Output Voltage  |            | -              | -   | 0.15*<br>Vddio | V    |
| VIH1   | Logic High Input voltage  |            | 0.75*<br>Vddio | -   | VDDIO<br>+3    | V    |
| VIL1   | Logic Low Input voltage   |            | -0.3           | -   | 0.25*<br>Vddio | V    |

| 4 | 2   | 5 |
|---|-----|---|
| 1 | 1   |   |
| 5 | L   | V |
| 2 | 1   | - |
|   | 100 | C |

| No. | Symbol | I/O | Function                   |
|-----|--------|-----|----------------------------|
| 1   | RST    | Ι   | Sensor system global reset |
| 2   | Vdd    | Р   | Power supply               |
| 3   | Vss    | Р   | Ground                     |
| 4   | IRQ    | 0   | Sensor data ready request  |
| 5   | SDA    | I/O | I2C serial data            |
| 6   | SCL    | Ι   | I2C serial clock           |


## 5. Pin Definition

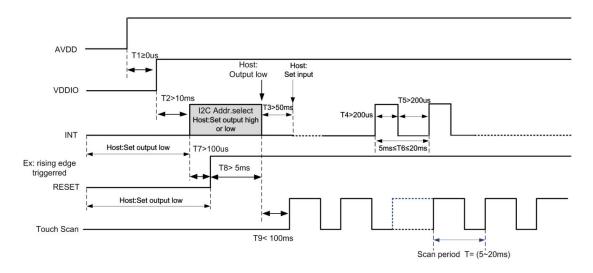
### 6. I2C Interface

Touch panel is used as I2C Slave Device, I2C Slave address is 0x14.

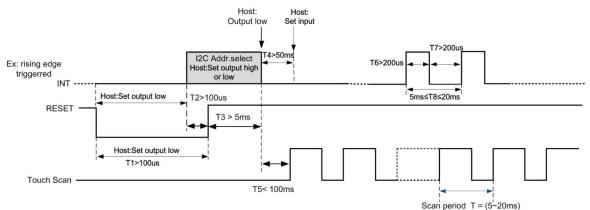
### 6.1. Interface Diagram

The system block diagram is as shown in below. There are three communication pins connected between CPU and Touch Panel Module which are including external interrupt IRQ, I2C pins SCL and SDA. The IRQ is active low while the touch state is calculated by Touch Panel Module and the touch information can be translated via I2C communication interface. The I2C data format, protocol and report packet are described as following.




### 6.2. Timing Characteristic

### Conditions:


VDD - VSS = 2.5 TO 3.3V TA = 25°C 400Kbps transmission rate, 2K pull-up resistor

| Symbol | Parameter                          | Min | Тур | Max | Unit |
|--------|------------------------------------|-----|-----|-----|------|
| Tlo    | SCL low period                     | 1.3 | -   | -   | us   |
| thi    | SCL high period                    | 0.6 | -   | -   | us   |
| tst1   | SCL setup time for Start condition | 0.6 | -   | -   | us   |
| tst3   | SCL setup time for Start condition | 0.6 | -   | -   | us   |
| thd1   | SCL setup time for Start condition | 0.6 | -   | -   | us   |
| tst2   | SDA setup time                     | 0.1 | -   | -   | us   |
| thd2   | SDA hold time                      | 0   | -   | -   | us   |

### **Power On Timing:**



### Timing for host resetting





Crystal Clear Technology 16 Jalan TP5—Taman Perindustrian Sime UEP 47600 Subang Jaya—Selangor DE Malaysia