Crystal Clear Technology

Product Specification

C216W24VXW00

(MECHANICAL SPECIFICATION – SIMILLAR TO C216W05 SERIES)

REVISION 1

Crystal Clear Technology sdn. bhd.

16Jalan TP5—Taman Perindustrian Sime UEP 47600 Subang Jaya—Selangor DE Malaysia. T: +603 80247099 F: +603 80247098

1.0 Table of Contents

		Page
1.	Table of Contents	1
2.	Record of revision	2
3.	General specification	3
4.	Absolute maximum ratings	4
5.	Electrical characteristics	4
6.	Environmental requirement	5
7.	LCD specification	6 ~ 8
8.	Interface	9
9.	Timing characteristics / Timing diagrams	10 ~ 12
10.	Power supply	13
11.	Block diagram	13
12.	Instructions	14 ~ 17
13.	Quality assurance	18 ~ 19
14.	Precautions in use LCM	20 ~ 21
15.	Outline drawing	22

2.0 Record of revision

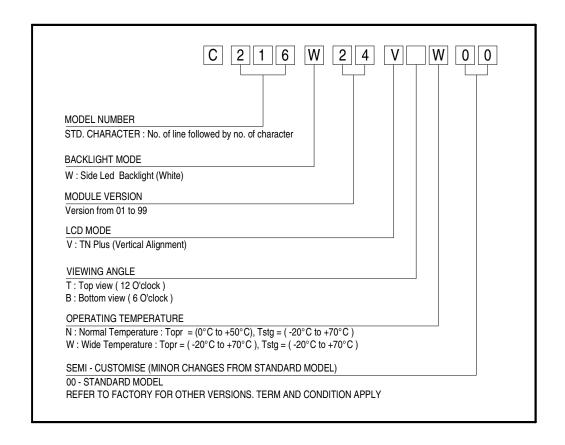
Rev	Date	Item	Page	Comment	Originator	Checked By
1.0	04.03.14			Initial Release	SCChong	Azhar

3.0 General specification

Display format: Characters 2 x 16

Character size: 5 x 8

Character size: 5.20mm x 9.55mm


View area: 99.0mm x 24.0mm

Active area: 95.2mm x 20.0mm

General dimensions: 122.0mm x 44.0mm

Controller/Driver: ST7066U-0A-B and ST7065C-B or equivalent

With DC-Dc on board

Spec. No: C216W24VXW00 REV1.0

4.0 Absolute maximum rating (at Vss = 0V, ambient temperature = $25^{\circ}C$)

NO	ITEM	SIMBOL	MIN	MAX	UNIT
1.	Power Supply voltage (Logic)	$V_{DD} - V_{SS}$	-0.3	7	V
2.	Power Supply voltage (LCD Driver)	$V_{DD} - V_0$	-0.3	13	V
3.	Operating Temperature	Top	Refer p	age 3	°C
4.	Storage Temperature	T_{st}	Refer p	age 3	°C

5.0 Electrical characteristics

NO	ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
1.	Power Supply voltage (Logic)	$V_{DD} - V_{SS}$	-	4.5	5.0	5.5	V
2.	Power Supply voltage (V _{LCD})	V_{DD} - V_0	25°C	10	0.0±5%		V
3.	Input Voltage	V_{IH}	ı	2.2	-	Vdd	V
	(except OSC1)	V_{IL}	-	-0.3	-	0.6	V
4.	Current Supply	I_{DD}	$V_{DD}-V_{SS}=5V$	-	2.0	3.0	mA

5.1 Backlight Options

NO	COLOR	FORW	ARD VO (V)	LTAGE	FORWA	ARD CUI	MIN BRIGHTNESS	
		Min	Тур.	Max	Min	Тур.	Max	(cd/m2) *
1.	White	-	5.0	-	-	90	120	1500
2.								
3.								
4.								
5.								

*Note: 1. Brightness measured at backlight surface.

- 2. On LCD surface, brightness is only about 10% to 15% of backlight brightness.
- 3. Backlight lifetime estimated as 20K hours. (Condition: Ta = 25°C and current supply at typical value)
- 4. The Led lifetime is defined as the final brightness is at 50% of original brightness.

6.0 Environmental requirements

NO	ITEM	CONDITION	
1.	High Temperature Storage	+70±2°C / 96Hours	
2.	Low Temperature Storage	-20±2°C / 96Hours	Inspection after 2 ~ 4 hours storage at
3	High Temperature Operating	+60±2°C / 96Hours	room temperature, the sample shall be free from defects: 1. Air bubble in LCD
4	Low Temperature Operating	-10±2°C / 96Hours	2. Seal leak3. Non-Display
5	Temperature Cycle Operating	-10±2°C ~ 25°C ~ +60±°C x 10 Cycles (30min) (5 min) (30min)	4. Missing segment 5. Glass crack 6. Current Idd should be lower
6	Humidity Test (Operating)	40°C, 90±5%RH, 96Hrs	than double of initial Idd.
7	LCD Lifetime	50 000 Hours (Excluding Backlight)	

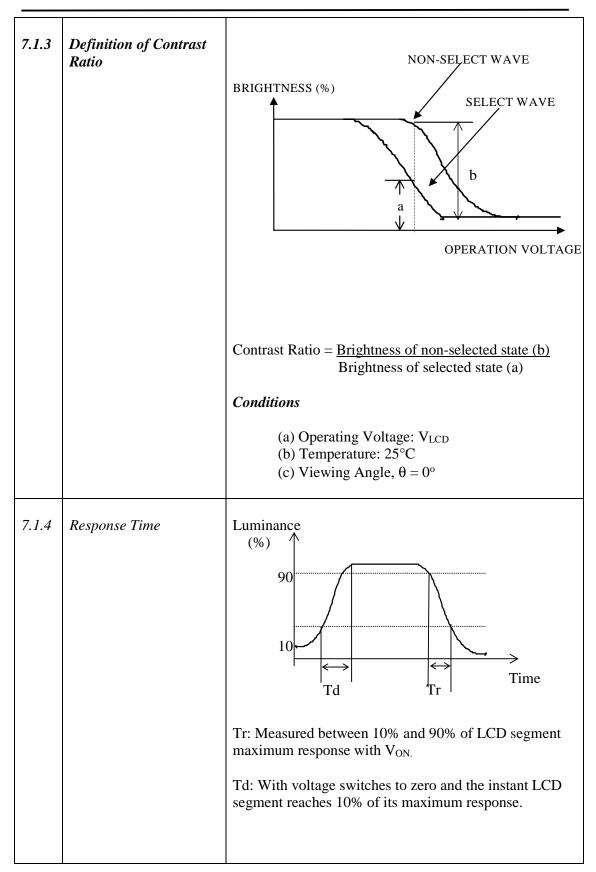
Note:

- 1. The background on LCD has the possibility to be changed in different temperature range.
- 2. The test samples should be applied to only one test item.
- 3. Sample size for each test item is $1 \sim 5$ pcs.

7.0 LCD specification

7.1 Electro-optical characteristics (at ambient temperature = 25° C)

NO	ITEM	SYMBOL	CONDITION	LCD TYPE UNIT TN+ (-VE) B/W	REF.		
1	Operating Voltage (Volt)	$V_{ m LCD}$	$\theta = 0$ $Cr = max$	10.0V	7.1.1		
	***	θ x 1		+25			
2	Angle	θ x 2	CR ≥ 2	-25	7.1.2		
2		_	_	_	(Deg) θ y 1	$V_{LCD} = 10.0V$	-30
	(100g)	θу2		+30			
3	Contrast Ratio	CR	$\theta = 0^0$ $V_{LCD} = 10.0V$	3.0	7.1.3		
4	Response	Rise Time (Tr)	$\theta = 0^{0}$	200	7.1.4		
4	Time (msec)	Decay Time (Td)	$\theta = 0^0$	250	7.1.4		

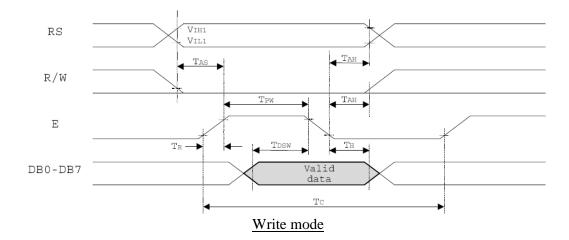

Note:

- 1. Viewing angle data is based on bottom view product by default. Should it be a top view product, values are then swap.
- 2. Contrast ratio is based on typical data when using white colour as backlight.
- 3. Equipment Used Eldim; Ez Contrast 120R, Spot Size = 2mm

NO	CHARACTERISTICS	DEFINITIONS
7.1.1	Definition of Operating Voltage (V _{LCD})	V _{LCD} : Operating Voltage F: Frame Frequency
7.1.2	Definition of Viewing Angle	TOP θ REAR LEFT RIGHT FRONT BOTTOM
		REAR (θ y2) LEFT(θ x2) RIGHT(θ x1) FRONT (θ y1)

8.0 Interface

8.1	Display Driver	ST7066U aı	nd ST7065						
8.2	Duty Cycle	1/16	1/16						
8.3	Pin-out Assignmen	ts							
	Pin No	Symbol	Description						
	1	V _{SS}	Ground terminal of module						
	2	V_{DD}	Supply terminal of module						
	3	Vo	Power supply for Liquid Crystal Drive						
	4	RS	Register Select:						
			RS = 0 Instruction Register						
			RS = 1 Data Register						
	5	R/W	Read/Write:						
			High = Read						
			Low = Write						
	6	Е	Enable						
	7 to 14	D0 to D7	Bi-directional Data Bus. Data Transfer is performed						
			once, thru D0 to D7, in the case of interface data						
			length is 8-bits.						
	15	(BL -)	Backlight Ground						
	16	(BL +)	Backlight Power Supply						


RS

R/W

Ε

DB0-DB7

9.0 Timing characteristics / Timing diagrams

VIH1
VIL1

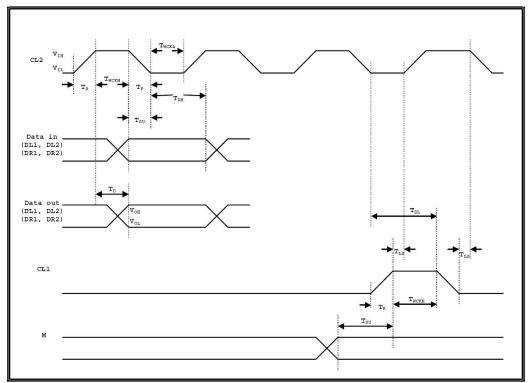
TAS

TAH

TAH

TAH

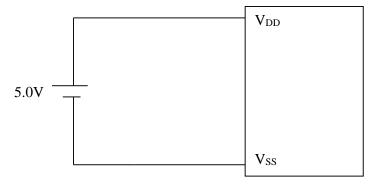
TOSW


TH

Read mode

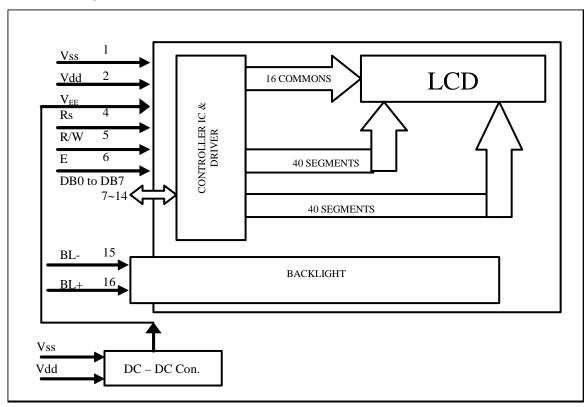
Valid data

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
		Internal Clock Operation)		·	
fosc	OSC Frequency	R = 91ΚΩ	190	280	350	KHz
		External Clock Operation	7		1	
f_{EX}	External Frequency	-	125	280	350	KHz
	Duty Cycle	-	45	50	55	%
T_R, T_F	Rise/Fall Time	-	-	-	0.2	μs
	Write Mo	de (Writing data from MPU	to ST70	066)		
Tc	Enable Cycle Time	Pin E	1200	-	-	ns
T_{PW}	Enable Pulse Width	Pin E	140	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T_AH	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40	-	-	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns
	Read Mod	le (Reading Data from ST7	066 to N	1PU)	1	1
Tc	Enable Cycle Time	Pin E	1200	-	-	ns
T_{PW}	Enable Pulse Width	Pin E	140	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T_AH	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	100	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns
	Interfa	ace Mode with LCD Driver(ST7065,)	•	
T _{CWH}	Clock Pulse with High	Pins: CL1, CL2	800	-	-	ns
T _{CWL}	Clock Pulse with Low	Pins: CL1, CL2	800	-	-	ns
T _{CST}	Clock Setup Time	Pins: CL1, CL2	500	-	-	ns
T _{SU}	Data Setup Time	Pin: D	300	-	-	ns
T _{DH}	Data Hold Time	Pin: D	300	-	-	ns
T_{DM}	M Delay Time	Pin: M	-1000	-	1000	ns



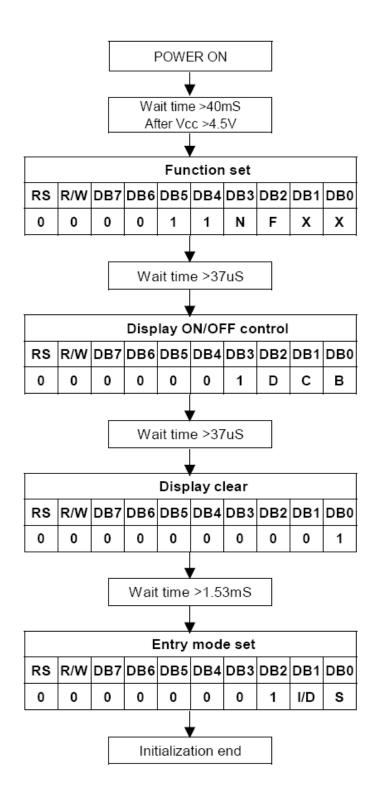
Interface with extension driver

Symbol	Parameter	Test Condition	Min.	Max.	Unit	Applicable pin
FCL	Data Shift Frequency	-	-	400	KHZ	CL2
TWCKH	Clock High Level Width	-	800	-	ns	CL1,CL2
TWCKL	Clock Low Level Width	-	800	-	ns	CL2
TSL	Clock Set-up Time	CL2 → CL1	500	-	ns	CL1,CL2
TLS	Clock Set-up Time	CL1 → CL2	500	-	ns	CL1,CL2
TR/TF	Clock Rise/Fall Time	-	-	200	ns	CL1,CL2
TSU	Data Set-up Time	-	300	-	ns	DL1,DL2,DR1,DR2
TDH	Data Hold Time	-	300	-	ns	DL1,DL2,DR1,DR2
TD	Data Delay Time	CL = 15 PF	-	500	ns	DL1,DL2,DR1,DR2


10. Power Supply

Where V_{DD} - V_0 = LCD Driving voltage

11. Block Diagram



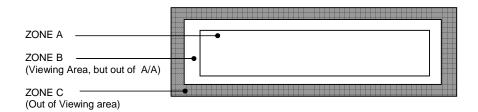
12. Instructions

				Inst	ructi	on C	ode					Description
Instruction			DB	DB	DB	DB	DB	DB	DB	DB	Description	Time
	RS	RW	7	6	5	4	3	2	1	0		(270KHZ)
Clear	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM, and set	1.52 ms
Display												
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1: entire display on C=1: cursor on B=1: cursor position on	37 us
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	х	х	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	
Function Set	0	0	0	0	1	DL	N	F	х	х	DL: interface data is 8/4 bits NL: number of line is 2/1 F: font size is 5x11/5x8	37 us
Set CGRAM address	0	0	0	1	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	Set CGRAM address in address counter	37 us
Set DDRAM address	0	0	1	AC 6	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	Set DDRAM address in address counter	37 us
Read Busy flag and address	0	1	BF	AC 6	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us

8 bit operation example.

Relationship between character code (DDRAM) and character pattern (CGRAM)

Character Code (DDRAM Data)					CGRAM Address				Character Patterns (CGRAM Data)																												
b7	b6	b5	b4	b3	b3	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0																
					0	0	0				0	0	0				1	1	1	1	1																
					0	0	0			0	0	0	1				0	0	1	0	0																
				-	0	0	0	0			0	1	0				0	0	1	0	0																
0	0	0	0		0	0	0		0		0	1	1		_	-	0	0	1	0	0																
U		U	U		0	0	0				1	0	0	_	-		0	0	1	0	0																
					0	0	0				1	0	1				0	0	1	0	0																
																					0	0	0]			1	1	0				0	0	1	0	0
					0	0	0				1	1	1				0	0	0	0	0																
					0	0	1				0	0	0				1	1	1	1	0																
			0	'	0	0	1				0	0	1				1	0	0	0	1																
				0	0	0	0	0	0	0					0	0	1				0	1	0				1	0	0	0	1						
0	0	0										0	0	1	0	0	0	0	1	1				1	1	1	1	0									
U		0									U	0	0	U	U	U	U	U	U		0	0	1	"	U	0	1	0	0	-	- -	-	1	0	1	0	0
										0	0	1				1	0	1				1	0	0	1	0											
											0	0	1				1	1	0				1	0	0	0	1										
					0	0	1				1	1	1				0	0	0	0	0																


Character Generator ROM (ST7066U-0A-B)

67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	3															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

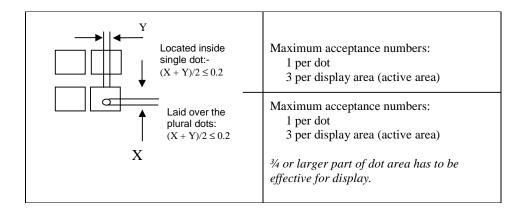
13.0 Quality Assurance

13.1 ZONE DEFINITION

13.1.1 Black Spot, White Spot and Foreign Material

Defect Category	Defect Description	Crit	erion			Drawing Specification
Black Spot, White Spot	Black Spot, White Spot and Foreign	Zone /	Acc	eptable l	No.	
and Foreign Material	Material	Dimension	A	В	С	В
Material		D <u><</u> 0.10mm	NC	NC	NC	↓
		0.10 <d 0.20mm<="" td="" ≤=""><td>3</td><td>2</td><td>NC</td><td>D = (A + B)/2</td></d>	3	2	NC	D = (A + B)/2
		D > 0.20 mm	0	0	NC	5 - (11 5)/2
		NC: No Count D: Mean Diameter of				

13.1.2 Line Shape and Scratches


Defect Category	Defect Description		Criteri	Drawing Specification			
Line shape	Line shape and						
and scratches	cratches scratches		Zone /Dimension			No.	
		X	Y	Α	В	C	
		-	<0.01mm	NC	NC	NC	
		< 2 mm	< 0.02mm	1	1	NC	
		<1 mm	< 0.0 2mm	1	2	NC	
					•		

13.1.3 Pin Hole

Defect Category	Defect Description	Criterion	Drawing Specification
Pin Hole	Pin hole / void at light up segment	$D \le 0.20$ mm within 1 part/segment	D = (A + B)/2

13.1.4 Polarizer Bubble/Foreign Material

Defect Category	Defect Description	Crite	Drawing Specification			
	Polarizer bubble /	izer bubble /				
	Foreign material	Zone /	Acc	eptable l	No.	*
		Dimension	A	В	С	igg $igg $
		D ≤ 0.15mm	NC	NC	NC	← A →
		$0.15 < D \le 0.30$ mm	3	5	NC	D = (A + B)/2
		$0.30 < D \le 0.50 mm$	2	3	NC	D = (A + B)/2
		$0.50 < D \leq 1.0 mm$	0	1	NC	
		NC: No count	1			
		D: Mean Diameter of	Defect			
		Accept - if air bubble a not propagate into effe				

Note: Total defects shall not exceed five

CC

Spec. No: C216W24VXW00 REV1.0

14. Precaution for using LCM

1. Liquid Crystal Display (LCD)

LCD is made up of glass, organic sealant, organic fluid and polymer based polarizers. The following precautions should be taken when handling.

- b) Keep the temperature within the range of use and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel off or bubble.
- c) Do not contact the exposed polarizer with anything harder than HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzene.
- d) Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or colour fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.
- e) Glass can be easily chipped or cracked from rough handling, especially at corners and edges.
- f) Do not drive LCD with DC voltage.

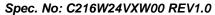
2. Liquid Crystal Display Modules.

2.1 Mechanical Considerations

LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modification. The following should be noted.

- a) Do not tamper in any way with the tabs on the metal frame.
- b) Do not modify the PCB by drilling extra holes, changing its outline, moving its component or modifying its pattern.
- Do not touch the elastomer connector, especially insert a backlight panel (for example, EL)
- d) When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.

 a) Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.


2.2 Static Electricity

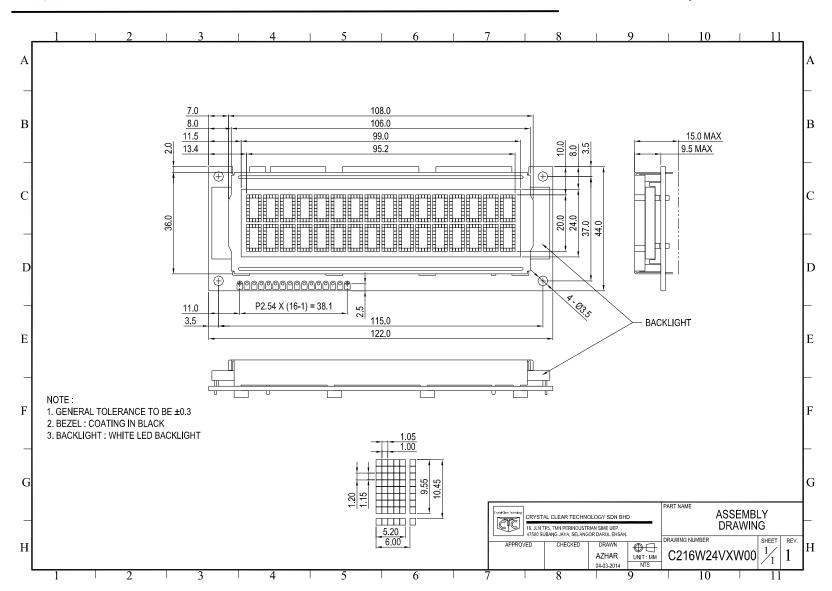
LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

- a) The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.
- The modules should be kept in antistatic bags or other containers to static for storage.
- Only properly grounded soldering irons should be used.
- d) If an electric screwdriver is used, it should be well grounded and shielded from commutator spark.
- e) The normal static prevention measures should be observed for work clothes and working benches, the latter conductive (rubber) mat is recommended.
- f) Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.

2.3 Soldering

- a) Solder only to the I/O terminals.
- Use only soldering irons with proper grounding and no leakage.
- c) Soldering temperature: 280 °C
- d) Soldering time: 3 to 4 sec
- e) Use eutectic solder with resin flux fill.
- f) If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed afterwards.

2.4 Operation


- a) The contras can be adjusted by varying the LCD driving voltage V0
- b) Driving voltage should be kept within specified range, excess voltage shortens display life.
- Response time increases with decrease in temperature.
- d) Display may turn black or dark blue at temperature above its operational range, this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- e) Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

2.5 Storage

If any fluid leaks out of the damage glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

2.6 Limited Warranty

Unless otherwise agreed between Crystal Clear Technology and customer, Crystal Clear Technology will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with Crystal Clear Technology acceptance standards, for a period of one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of Crystal Clear Technology is limited to repair and/or replacement on the terms set forth above. Crystal Clear Technology will not responsible for any subsequent or consequential events.

Crystal Clear Technology 16 Jalan TP5—Taman Perindustrian Sime UEP 47600 Subang Jaya—Selangor DE Malaysia